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P (v =) =p,} (v~ ).
From the general law,

=, BT,
P,=p, RT,
n T,

For P, = P, py="" Substituting,

1
Tﬁ 2 2 2 2
Py (v —vy=p, (v —v?). Hence,
1

T, (v — ) =T, (CRE R

The relative velocity of one stratum, (v — v;’), multiplied
by the temperature of the second, 7, equals the relative
velocity of the second stratum, (v — vj), multiplied by the
temperature of the first, 7|; and this maintains the pressure
as if the air had no motion, and the temperature gradients
remained normal. The first type of vortex with the funnel-
shaped tube depends upon the first principle more than upon
the second, while the second type of vortex with the dumb-
bell tube depends upon the second rather than upon the first.
This will be illustrated by the Chamberlain 2d A, the St. Louis
tornado, and the De Witte hurricane. The ocean cyclone has
in addition to these two sources of motion a third, similar to
the last, but modified by the fact that the boundary of the
stratification between the cold and warm masses instead of
being horizontal is vertical in part, as shown by the tempera-
ture distributions in cyclones and anticyclones up to 10,000
meters. The land cyclones depend more decidedly upon the
third source of motion than does the ocean cyclone.

II.—THE THEORY OF VORTEX MOTION APPLICABLE TO THE
DUMB-BELL-SHAPED TUBE IN THE COTTAGE CITY WATER-
SPOUT.

. THE DUMB-BELL-SHAPED TYPE, COTTAGE CITY WATERSPOUT, CHAMBERLAIN

2D A.

An examination of the photographs of the Cottage City
waterspout given in the MoxtaLy WEATEER REVIEW for July,
1906, pp. 307-315 and Plates I--X, shows that two distinct forms
of the tube or types of the vortex were developed at different
times from the same cloud. At the second appearance, 1:02
p- m. to 1:17 p. m. (Plates I-VII), the dumb-bell-shaped type
prevailed (see Chamberlain’s photograph 2d A); and at the
third appearance, 1:20 p. m. to 1:27 p. m. (Plates VIII-X.),
the funnel-shaped type was exhibited. In all accessible photo-
graphs of tornadoes these two types occur quite indifferently
in numbers, apparently developed by subtle differences in the
physical conditions of the cloud at the several occasions of their
formation. While both types are of theoretical interest, it is
much more important for the meteorologist to understand the
dumb-bell type,because the large tornadoes, the hurricanes,and
the cyclones in part, are constructed upon the same principles,
differing from one another only in their dimensions and pro-
portions. Since the ultimate explanation of the motions of
the atmosphere in cyclones and anticyclones seems to be very
closely associated with the theory of dumb-bell vortices, it will
be proper to keep in mind the goal toward which this present
exposition tends.

It can easily be seen in the photographs above referred to, 2d
A to 24 G, inclusive (Plates I to VII), that the tube, instead of
continuing to taper from the cloud to the sea level, reaches a
minimum diameter more than halfway down from the cloud to
the sea and then begins to expand. The lower portion is not
entirely visible, on account of the enveloping cascade of spray,
and it will be shown in these papers that, in fact, the lowest
section is not fully developed, and that the vortex tube is
amputated or truncated by the sea-level surface at from one-
twentieth to one-third of its theoretical length, according to
circumstances. The corresponding upper section is fully de-
veloped at the cloud, tho the tube and the cloud merge into
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one another before the asymptotic extension of the vortex is
reached. When the tube begins to break up, and the gyratory
velocity diminishes, the dumb-bell form appears more clearly,
as on 2d F, and it is very distinct on 2d G. In the earlier
numbers of the series, 2d A to 2d E, the inner tubes of the
complete vortex, which have very great velocities, are formed,
but the outer tubes appear as the rotation velocity falls in
amount.

According to the formulas of the first paper of this series
(compare Table 3 and Cloud Report, 1898, page 513), we begin
with the vortex system exprest as follows:

v
1. Current function. ¢ = — = Am"sin a2
h
2. Radial velocity. we=—1 gf‘ =—Aow cos az.
@ 92
/v
3. Tangential velocity. v = @ = Aqosin .
@
e 10
4. Vertical velocity. W = 1()—" = 24 sin az.
ol

APPLICATION OF THE FORMULAS TO THE COTTAGE
CHAMBERLAIN 2D A.

CITY WATERSPOUT,

The primary difference between the funnel-shaped and the
dumb-bell-shaped vortex tube is that the former extends from,
its asymptotic relation at one plane of reference, in the base of
the cloud, perpendicularly to a great distance from it, taper-
ing continuously to a tube of very small dimensions, while the
latter becomes agymptotic to two planes of reference, one in
the cloud base and the other at or below the surface of the
sea. Not only is the distance between the two reference
planes to be measured in meters, but the axis or connecting
line is also to be divided into 180 parts or degrees. Thus, in
Fig. 3, assume that the upper line is 1200 meters from the
lower line, that the axis is of the same length, and that this
represents the entire vortex. If this length is taken as 180°
or parts then the a appearing in the formulas is

180

C= 1560 = 0.150 [9.17609],

which gives the angular change per meter. Since the symmetry
of the formulas, as controlled by the sine and cosine terms,
shows that the variations lie between 4+ 1 and — 1, it follows
that sin a z and cos a z will carry the function thru all the inter-
mediate values. Tig. 3 is constructed by plotting the lines
determined by the coordinates of Table 17, which gives the
radii @ of the several tubes at different heights 2.

Since there is no way to determine the value of the tangen-
tial velocity at any given point, it is necessary to assume a
value for vat a point (m@, z). .The correctness of the one adopted
can be checked by constructing the vortex from these data,
and comparing it with the shape as shown on the photograph.
The height z was determined as about 1200 meters by the
measurements, and after several trials I have taken

az= 170° or 10°,
o = 200 meters,
v= 2 meters per second.
The value az= 10° is for a point near the sea level, and
the value ¢z = 170° is for a point just below the cloud base.
Hence we have the current function,
a¢ = vo = 400[2.60206].
For the value of the ratio of the successive radii, at the points
separated by 10-millimeter intervals of pressure, as 760,
750 690, we shall agsume the same value as that given
on page 469, whose logarithm is,
log p = 0.20546.
- These data enable us to proceed with the computations in
the regular order, and to develop the entire structure of this
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vortex. It is most convenient to compute the values of w, v,
A, u, and w on one selected level, as that for az = 10°, and
then to extend the computation to the same quantities on the
other levels by the use of the formulas 38-49, given in the
preceding paper of this series.
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F1d. 3.—Vertical section thru the waterspout, showing the relation
between mand z. The tubes =, and &, are developed only during the
time of dissipation of the vortex, and probably tubes &, and w, are not
actually developed in this vortex.

SUMMARY OF THE CONSTANTS FOR THE COMPUTATION ON THE PLANE
az=10°,

log a = log vs = 2.60206

log p = log " = 0.20546
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log 8in az = log sin 10° = 9.23967
log cos az = log cos 10° = 9.99335
log a sin az = log a sin 10° = 8.41576
log a cos az = log a cos 10° = 9.16944

loga log 0.150 = 9.17609

Take the intervals determined by the log p as the points for
the computation.

TABLE 13.— The radit of the successive vortex tubes, log @n 41
=log &=, — log p == log m, — 0.205.46.

Number of line.*

|
12‘3 4‘5'

| !
2.30103 | 2.09557 ‘ 1.80011 | 1.68465 | 1.47919 | 1. 27373
200.0 | 124.6 ‘ 71.6 30.1 ’ 18.8

| | ‘ ‘

6 ‘ 7 f‘ 8

1.06827 | 0. 86281
I

17| 7.3

log & .........

48. 4

*The word “ line " here,anll in subsequent tahles and text,”l:efers to the numbered lines
of figure 3, which represent curved surfaces, bounding successive vortex tubes, taken for
purposes of eomputation.

The successive radii on the same plane are found by sub-
tracting log p = 0.20546 from the values in the preceding col-
umns.

TABLE 14.— The tangential velocities, log vu 41 = log v - log p
= log v + 0.205646.

0.30103 | 0.50649 | 0.71195 | 0.91741 | 1.12237 | 1. 32533
Vi 2.0 3.2 5.2 8.3

1. 53379
342

1, 73925

13.3 21.3 549

The several velocities on the same plane are found by adding
log p = 0.20546 in succession.

To compute the constant 4 for each of the successive vortex
tubes we construct the values of log aw sin az and subtract
these values from the logarithms of the corresponding veloci-
ties v. The constant 4 holds for each single special tube, but
changes its value from one tube to another.

TABLE 15.—The conatant A at the successive vortex tubes.

loga oy sin = .| 0.71679 | 0.51135 | 0. 3058 | 0.10041 ‘ 0.80105 | 9.68049 | 9. 48108 | o.27857
' 9.58424 | 9.99516 | 0.40608 | 0. 51700 | 2.46068
-0.3839 ‘ 0.088 | 25473 4 16.9010 | 43.5350 112.j400 | 288.853

In forming the log aw sin az, the log p is subtracted in sue-
cession, and in forming the log 4, 2 log p is added suc-
cessively.

To compute the radial velocity «, and the vertical velocity
w, the values of log Adaw and 24 are constructed, and log
cos az and log sin az added to them respectively.

1.22792 | 1.63884 | 2.04976

6. 5614

TABLE 16.— The radial and vertical velocities for each vortex tube.

1 2 3 4 5 [3 7 8
log {a@3| 1.06186 | 1.26652 | 1.47228 | 1.67774 2.08866 | 2.20412 | 2, 49958
log w....|—1.05471 | —1, 26017 |—1, 46563 |—1. 67109 —2.08201 | —2, 28747 | —2. 49293
oo — 1L.34 [— 18,20 |— 29.22 |— 46.89 — 120.79 |— 193.85 |— 811.12
log 24..| 9.88527 | 0.29619 | 0.70711 ; 1.11803 | 1.52895 | 1.93987 | 2.35079 | 2.76171
log w.. 9.12494 | 9.53586 | 9.04678 | 0.35770 | 0.76862 | 1.17954 | 1,59046 | 2,00138
w.. . 0.13 0.34 0.88 2,28 5. 87 15.12 38.95 100. 32

Having computed the value of log u under the radius =,
the others are found by adding log p; and the successive val-
ues of log w are obtained by adding 2 log p to the several
values in succession. Since the axis of z is positive upward,
the movement of the air in the waterspout is continuously
positive and therefore upward; the motion of the radial
velocity u is inward in the lower half of the vortex, but out-
ward in the upper half of it.

Having thus found the values of log ®, log u, log v, and
log w on a given plane of the vortex (in this case the plane
which passes thru the point on the axis corresponding to
az=10°), it is proper next to extend the computation to other
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planes by employing the other values of sin az and cos az as
required. In order to exhibit the amount of work needed to
compute these terms for 10-degree intervals in a vertical di-
rection, and for the stated intervals in a horizontal direction,
the computations for log @ and or are given in full, those
for u, v, and w requiring similar tables.

TABLE 17.— Computation of log @ and @ for each tube at successive altitudes.
Values of log @.
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TABLE 20.— The vertical velocities w for each tube and allitude.

Altitude. 1 2 3 4 5 6 7 8
[+]
o= © @ © @ @ @® o o
10 | 2.80103 | 2.09557 | 1.89011 | 1.68465 | 1. 47919 | 1.27373 | 1. 06327 | 0.86281
20 | 2, 15584 | 1,94838 | 1.74292 | 1.53746 | 1.33200 | 1.12664 | 0. 92108 | 0. 71562
30 | 2.07138 | 1.86592 | 1.66046 | 1.45500 | 1, 24954 | 1,04408 | 0. 83362 | 0.63316
40 | 201683 | 1.81137 | 1.60591 | 1. 40045 | 1.19499 | 0,98953 | 073407 | 0.57861
50 | 1.97874 | 1.77328 | 1.56732 | 1.36236 | 1.15690 | 0, 0.7459% | 0. 51052
60 | 1.95210 | 1.74664 | 1,54118 | 1.38572 | 1.13026 | 0 0. 0, 51353
70 | 1.93437 | 1.72591 | 1.52345 | 1.31799 | 1,11253 | 0. 0. 0. 49615
80 | 1.92419 | 1.71878 | 1.51:327 | 1,30751 | 1.10235 | 0. 8068y | 0. 69 0, 43597
90 | 1.92086 | 1.71540 | 1.50994 | 1.50448 | 1.09902 | 0. 89356 | 0. 68 0. 48264
Values of the radius v for each tube and altitude.
Altitude. 1 2 3 4 5 6 7 8 I
[+]
ar= 1) w ao an o [2<] o o a0 H
10 2000 | 124.6 | 7.6 484 30.1 18.8 | 1L7 7.3 60
20| 142.5| #88.6| 55.3| 843| 21.5| 13.4 8.3 5.2
30| 117.9| 73.4| 45.8| 28.5| -17.8] 111 6.9 1.3 26
401 103.9| 648 404 251 16.7 [ 6.1 3.8
50 | 95.2| 59.3| 37.0] 20! 144 8.9 5.6 3.5 34
60 | %u.6| 558 348| 28| 135 8.4 5.2, 8.3
bt 86.0 | 5.6 33.4| 2.8 120 8.1 5.0 3.1 30
80 | 84.0| 523| 3824 20.3| 127 7.9 1.9 3. 06
90 | 83.3| S51.9| 22.4| 20.2| 128 7.8 1.9 3.04 a
100 | S4.0| 52.3| 22.6| 20.3| 12.7 7.9 1.9 3.06
110 | 860! 53.6| 334] 2.8 130 8.1 5.0 3.1 30
120 | 896, 55.8| 348 21.6| 155 8.4 52 3.3
130 | 95.2| 593 38701 23.0| 144 8.9 5.6 3.5 a3
140 | 103.9 | 64.81 0.4 ' 5.1 15.7 9.8 6.1 3.8
150 | 117.9 | 73.4| 4581 25| 17.8| 111 6.9 1.3 39
160 | 142.5| 88.8 | 55.3| 534.3| 21.5| 13.4 8.3 5.2
4170 | 2000 | 1246 | 7.6 | 454 301 18.8 | 1.7 7.3 63
180 w o o o o 4 © ‘ oy !

The last column, marked C, in the second portion of Table

17, contains the radius as scaled from the photograph, and it
indicates that the vapor tube is a vortex lying a little inside
the radius =, on the scale adopted. The radii fluctuate con-
siderably 'in a natural vortex, as may be seen by comparing
Chamberlain 2d A with Coolidge 2d B, 2d F, 2d G, and the
gelection of the data belonging to a given vortex is not easy,
when no observations are available. The barometric pressure
in vortices of this type will be considered fully in connection

with hurricanes.

THE VELOCITIES IN THE COTTAGE CITY WATERSPOUT.

TABLE 18.— The radial velocities w for each tube and altitude.

Altitude, logs 1 2 3 4 5 6 7 8
az=0°|—1,06136 |—11.52 |—18. 49 (—29.67
10 (—1.05471 |—11.34 |—18,20 (—29.22
30 |—0.99889 |— 9.97 |—16.01 |—25.69
50 |—0,86943 |— 7.40 |—1L.83 |—19.07
70 |—0.59541 |— 3.94 |— 6.32 |—10.15
90 —® 0’ 0 0
110 | 0.59541 | 3.94 | 6.32| 10.15 X .14
130 | 0.86943 | 7.40 | 11.8S| 19,07 | 30.61 | 49.13| 78.84| 126.53
150 | 0.99889 | 9.97 | 16,01 | 25.69 | 41.24 | 66.18 | 106.22 | 170.47
170 | 1.05471 | 11.34 | 18.20 | 29.22 | 46.89 | 75.26 | 120.78 | 193.85
180 | 1.06136 | 11.52 | 18.49 | 29.67 | 47.61 | 76.42 | 122.65 | 196.83
TABLE 19.— The tangential velocities v for each tube and altitude.
az=0° — 0 0 0 o | o 0 0 0
10, 0.30103 200 | 3.21| 5145] 827 ‘ 13.27| 2130 | 3418 | 5186
30| 0.76033 | 5.76 | 9.24| 1483\ 23,81 | 38,21 | 61.32| 98.42| 157.97
50 | 0,94561 | 8.82 | 14.16 | 22.73 | 86,47 | 58.54 | 93,95 | 150.79 | 242,01
70 | 1.03435 | 10.62 | 17.37 | 27.88 | 44,741 7L.81 | 115,25 | 184.98 | 29687
90 | 1.06136 | 11.52 | 18.45 | 29.67 | 47.61 | 76.42 | 122,65 | 196.84 | 815,92
110 | 1.03435 | 10.82 | 17.37 | 27.88 | 44.74 | 7L.81| 11525 ' 13498 | 296.87
130 | 0.94561 | 8.82 | 14,16 | 22,73 | 36.47 | 58.54 | 93.95 150,79 | 242.01
150 | 0.76033 | 5.76 | 9.24 | 14.85| 23.81| 38.21 | 6L.32, 9842 157.97
170 | 0.30103 | 2.00| 320, 515) 8.27 1327\ 20L30| 3418| 5456
180 | — o> 0 0 0 0 ‘ 0 0 0 0

T
=00 —w» ’ 0 0 0 0 0 0 0 ‘ 0

10 | 9.12494 0.13 0.34 0. 38 2,28 5. 87 15.12 38.94 | 100.32

30 | 958424 0.38 0.99 2.54 6,56 | 16.90 43.54 | 112,14  288.86

50 | 9.76952 0,58 1.52 3.90 | 10.05 | 25,89 66.70 | 171.81 | 442.55

70 | 9.85826 0,72 1.86 4.79 | 12.33 | 31L.76 81.82 | 210.76 | 542.88

90 | 9.88527 0,77 1.98 5.10 | 13.12 | 33.80 87.07 | 224,28 - §77.71

110 | 9.85826 0.72; 1.86 4,79 | 12,33 | 3L.76 81.82 | 210.76 , 542,88

130 | 9.76952 0. 568 1. 52 3,90 | 10.05 | 25.89 66,70 | 171,81 | 442,55

150 | 9.53424 0.38 0.99 2,54 6,56 | 16.90 43.54 | 112,14 | 288.86

170 | 9.12494 0.13 0,34 0.88 2,28 5.87 15.12 39.94 | 100.32
180 —® 0 0 0 0 0 0 0 0

The radial velocity reverses direction at tz=90°; it is very
large in the inner tubes, increasing toward the axis. The tan-
gential velocity is right-handed for upward velocities, so that v
and w are both positive for an axis drawn as in fig. 3. The
enormous velocities which are developed near the axis, especi-
ally the vertical velocity, show where the destructive forces
reside that are associated with tornadoes and waterspouts.
The hurricane also will develop velocities of a very high order.
It is quite probable that the tubes under (1), (2), (7), and (8)
did not develop in the vortex of the Cottage City waterspout,
tho covered by the computation, which extends beyond the
probable limits.

THE HORIZONTAL ANGLE { AND THE VERTICAL ANGLE 7 OF THE

CURRENT @ IN THE VORTEX.

As the angles of reference of the current, whose total velocity
is 9 (v, v, w) at the point (m, ¢, 5), we have taken ¢ and 7; 7 is
the angle between the tangent to the circle whose radius is @
and the horizontal component s, positive outward; 7 is the
angle between + and ¢, s being the projection of ¢ on the
horizontal plane. (See fig. 4.)

az=/80°

az=0°
F1c. 4.—Relations of the angles az and ¢ in the dumb-bell vortex.

az=90° 41
. "
tan ¢ = —, constant on any plane a2
v

¥ | increases from as=0° to az=90° and from m,

veeci| toward the axis.

tan 7 =

(Compare fig. 1, page 164.)
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The horizontal angle ¢ is directed inward from az=0° to
az=90°, and outward from as=90° to ¢2=180°. This angle ¢
is computed from

.

Lu
tan i=—,
v

and it is constant on the same plane as.

TABLE 21.— The horizontal angle i, negative inward, positive outward.

Height by angular

Bl aoure. 1 2 3 4 5 6 7 8
o o =] -] o o o
—90 —90 —90 —90 —90 —90 —90
—80 —80 —80 —80 —80 —80 —80
—70 ~T70 —70 —170 —70 —70 —70
—60 —60 —60 —60 —60 —60 —60
-50 —50 —50 =50 —50 —b0 —50
—40 —40 —40 —40 —40 —40 —40
—30 —30 —30 —30 —30 —30 —30
—20 —20 —20 —20 —20 —20 —20
—10 —10 —10 —10 —10 —10 —10
-0 —0 ‘ —0 1 —0 ‘ -0 —0 — 0

The angle 7 is negative from as=
from az=90° to az=180°.

The stream lines are directed toward the axis on the lower
asymptotic plane, and gradually incline from the radius as the
height, measured by the angle a2, increases, so that
(50) az=90°41 or 1=az—90°.

When az=90° the angle i=0°, and the current is parallel
to the circle described by the radius m, but from that level
to az=180°, 7 is positive and becomes 90° for az=180°, that is,
on the upper asymptotic plane at the base of the cloud. It
follows that the angle ¢ can be inferred from the height az
above the lower plane, or from measured values of the angle ¢
the height az can be immediately found. If on a given plane,
as the sea level, the currents of wind are observed to flow into
a vortex at a certain angle, ¢, measured from the tangent, or at
the angle ¢z measured from the radius, it follows that the
vortex is truncated by the sea level on that plane, and that
the truncating plane can thus be drawn thru a theoretical
vortex, this being the plane at which the complete vortex has
been cut off by rotating against the surface of the sea.

0° to az=90° and positive

TABLE 22.— The vertical angle 3, tan 7= o —-

Height by

angular 1 2 3 4 5 6 7 8

nieasure.
[o] o o ’ Q ’ o] ’ (=] I’ [o] ’ Q ’ [v] 14 o ’

az=180 0| 0 O 0o 0 0 0 0 0 0 0 0o 0| o olo o
170 10| 0 40 1 4 1 42 2 44 4 24 7 2| 11 11|17 37
160 20| 1 18 2 6 3 22 5 23 8 36 | 13 39| 21 17|32 1
150 30| 1 55 3 4 4 55 7 51 | 12 28 | 19 33| 29 40|42 26
10 40| 2 27 3 56 6 18 | 10 3 | 15> 52 | 24 32| 36 13|49 87
130 50| 2 55 4 41 7 8 | 11 55 | 18 43 | 28 32| 41 11 |54 29
120 60| 3 18 5 18 8 2 | 18 25 | 20 58 | 31 35| 44 37 |57 44
110 70| 8 85 5 44 9 10 | 14 31 | 22 34 | 83 43| 46 57|39 48
100 80! 3 45 6 1 93 | 15 11 | 23 82 | 34 57| 48 18160 57
90 90| 3 49 6 6 9 45 1525}23 52’3522 48 44|61 20

It will be shown that cyclones, hurricanes, and tornadoes
develop at the upper plane and extend downward toward the
surface, the lower portion of the vortex being destroyed in
the working of the tube against the sea or the land surface.
Thus in the cyclones the central plane for az=90° is in the
strato-cumulus level, where the angle az is about 50° or 60°,
making ¢ = —40° or —30°, which is the angle usually meas-
ured on the inflowing current. In the hurricane the central
plane is somewhat higher, while in the Cottage City water-
spout it is about 80° above the sea level, making the inflowing
current at the bottom of the cascade construct an angle of 10°
from the radius. It is such an action of the dumb-bell vortex
in developing the angles in this manner, with the inflowing
angle constant on a given plane, and proportional to the height

64 6

MONTHLY WEATHER REVIEW.

477

from the plane of reference, which produces the angles ob-
served in cyclones and hurricanes, rather than the friction %,
the deflecting force A, and the vertical constant c, as was as-
sumed by Ferrel and the German writers in their studies of
the problem. We have, therefore, in practise only to measure
the velocity and angle of inflow on a given plane, as the land
or the sea level, truncate the theoretical vortex at the corre-
sponding plane, and proceed to develop the velocities and
angles thruout the entire vortex to the cloud level where it
is actually generated.

The angle 7 is positive from az=0° to az=180°. "~ The angle
7 increases from az=0° to az=Y0°, and it decreases from
7z=90° to az=180°; the angle increases from the outer line
toward the axis, and in the middle of the vortex on the plane
az=90° at line 8 it may reach about 61°. The sec ¢ can not
be neglected in this computation, as the angle 7 is of all values
from 0° to 90°.

The total velocity can be computed from the formulas,

=(w*+v* 4w, or

g=vsec isec.

TABLE 23.— The fotal velocity g, in meters per second.

Height by
angular 1 2 3 4 5 6 7 8
measure,

o o
az=180 0 11.52 18.49 29,67 47.61 76.42 122.65 | 196.83 | 315.47
170 10 11,52 18.49 29. 68 47.62 76,64 123.58 | 200.65 | 331.47
160 20 11, b2 13. 50 29, 72 47, 63 77.29 126,21 | 211.256 | 372.60
150 30 11.52 18.51 29.78 43. 07 78.26 130,15 | 226.53 | 428.06
140 40 11.53 18. 53 29.85 48, 36 79.45 134.82 | 243.98 | 487.61
130 50 11.58 18,56 29.92 48,66 80. 69 139.60 | 261.50 | 543.81
120 60 11.54 18. 56 30. 00 48.95 81.84 143.97 | 276.53 | 691.77
110 70 11.54 18.58 30. 05 49,18 82.75 147.45 | 288.36 | 628.04
100 80 11. 54 18.59 30.09 49, 34 83,35 149,63 | 295.91 | 650,63
90 90 11.54 18.59 30. 10 49.39 83, 56 150.40 | 298,44 | 658,57

The visible vortex, as it develops in the atmosphere, is prob-
ably confined within the lines 3, 4, 5 and 6, tho possibly ex-
tending a little beyond s,

The volume of air V, in cubic meters per second, which
passes upward thru each vortex tube, is computed from the
formula,

V==
being the mean velocity, as obtained by the formula,
$ (log w, + log w, ;).
The value of Vis computed for three levels, and the result

is given in Table 24, taking the values of log = and log w from
Tables 17 and 20.

TABLE 24.— The volume of air ascending in each vorter tube.

(w, — ®,.,%) w, = a constant,

I)l

log w,, =

I
Height .
of stratum. 1-2 2-3 34 4-5 56 6-7 7-8
_ . N _,‘ ‘
az=10° 16451. 5 16451.5 | 16451.5  16451.5 16451. 5 16451. 5 16451. 5
a == 30° 16451.5 | 16451.5 | 16451.5 16451.5 16451.5 16451.5 ¢  16451.5
az=90° 164515 . 164515 ’ 16451. 5 ; 16451. 5 16451. 5 16451.5 ‘ 16451, 5
; i

In the funnel-shaped vortex it was found that the volume of
ascending air was 2467.7 cubic meters per second, so that the
dumb-bell vortex is carrying 6.666 times as much air upward as the
Sunnel-shaped vortex. It may be inferred that the change from
one type of vortex to the other is due to the requirements of
the temperature conditions at the cloud, the greater changes
due to the overflowing cold sheet demanding a stronger upflow
in the dumb-bell vortex, the smaller changes in temperature in
the horizontal sheet being satisfied by the feebler action of
the funnel-shaped vortex. This becomes equivalent to the
statement that at the immediate base of the cloud the hori-
zontal velocity u is stronger in the dumb-bell vortex than in
the funnel-shaped vortex.
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deflecting force.
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EVALUATION OF THE EQUATIONS OF MOTION.

In the future chapters we shall fully consider all the forces and conditions that appreciably affect vortex motions, but for
the present we shall consider only the simplified equations of motion that apply to the case of no inertia, no friction, and no

equation 200, and page 502, equation 180) become,

oprP

(1) - p(')ﬂ;

1 (2) 0
or

{ @ - 10z

The partial differentials of

ou ou vt
= U (')_(U+ wa—-&,
v o uw
= U oo 4 92 o
dw i dw
= u 0—m+ " 93 + g.

the

In this case the equations of motion of a vortex (see No. (6), page 465, or Cloud Report, 1898, page 504,

velocity in the direction of the radius = and the vertical z can be computed in terms of

the constants of the vortex, from the equation for the current function,

¢ =

A = 8in az.

Thus we find the partial differentials of the velocities as follows:

= — Ada o cos a:. 1 = Adaxsin a:. w =2 A sin az.
. ov . A w
51) (j_” = — A acos az. = < asin oz s = 0.
4 O )7 (IR0
on . v g il
? = 4da® wsin az. ——=2da meos ~ - =24dacosaz
a: dz )z

(24

u

(62)

Hence, the three equations

= A* a* m cos’ a:.

— A*a® msin az cos as.
0.

Ao oy sintacz.

of motion as above given

[ 1) — i),)P7= A m.
pom
(53) 1@ 0 =o.
l 3) — df) =g + 4 A° asin az cos a:.
poz

The second equation reduces to zero.

AN

EXAMPLE.

TABLE 25— Collection of the data for an example in computing the equations

of motion for any special

radius @ and level az.

Data. 1 2 3 4 5 G 7 8

log A 9.58424 | 9.99516 | 0.40608 | (. 81700 | 1,22792 | 1.6335¢ 204976 | 2. 4606%
4....] 0.3839 0. 9889 2.5473 6.6614 | 16,9010 | 43,5350 | 112 140 | 288.85:
log @p.| 2.80103 | 209557 | 1.80011 | 1.68465 | 1.47019 | 1.27373 | 1.06827 | 0. 86281
Top.| 2015384 | 1,94838 | 1.74202 | 1.53746 | 1,35200 | 1.12654 | 0.92108 | 0.71562
@ 200.0 124.6 77.6 48,4 30.1 15.8 1.7 7.3
Doy 142.5 88.8 55. 3 31.3 215 13. 4 8.8 5.2

log uyq..[—1.05471 | —1.26017 |—1, 46563 [—1.67109 |—1.87655 —2. 0B201 |—2. 28747 |—2. 40293
wag- .|—1. 03435 |—1.23951 | —1. +4527 |—1.65073 |—1.85619 | —2.06165 |—2.26711 |—2, 47257
tgg..| —11.34| —18,20| -—-29.22 | —46.89 ) —75.26 | —120.78 | —193.85 | —311.12
ugg..| —10.82§ —17.37 | —27.88 | —4L 74| —71.81 | —I115.25 | —184.93 | —296.56

log mo..] 0.30108 | 0.50649 | 0,71195 | 0.91741 | 1.12287 | 1.82833 | 1,53379 | 1,73425
reg..| 0.59541 | 0.80087 | 1.00633 | 1.21179 | 1.41725 | 1.62271 | 1.82817 | 2,03363

. . 2. 00 3.21 5. 156 8,27 13,27 21. 30 34.18 51.86

vgo. . 3.94 6.32 10.15 16.29 26.14 41,95 67.32 108.05
logwyg. .| 9.12494 | 9.53586 | 9.04678 | 0.35770 1 0,76862 | 1.17954 | 1.59046 | 2,0013%
Waq- 9.41932 | 9.83024 | 0.24116 | 0.65208 | 106300 | 1.47392 | 1.88484 | 2 29576
wyg- - 0.13 0.34 0. 8% 2,28 | 5.87 ‘ 15,12 38,94 100. 32
Wag- 0. 26 0.68 174 4,49 11.56 ’ 20,78 76,71 197.59

du . .
M- - = 2 4% a® o sin* az.
9z
du 2 » .
W= 2 4 ¢* @ gin az cos az.
Az
e I
w . =4 4%asinazcos az.
az
unr 3 2 .
= — A'd*wmsinazcosaz.
m

reduce to,

An example of the practical working of these equations may
be taken from the data of the preceding tables, which are
collected for convenience in Table 25. The point selected is
on the level a:=10° and between the radii @, and @,, intend-
ing to integrate across the tube m,—wm, at the level az=10°
and vertically thru this point from az=5° to az=15°.

The interpolations are to be made at the middle point of
the tube (mw,—m,) and on the plane az=10°.

The arrangement of the computations for each side of each
equation (thus checking the theory from two points of view)
is as follows:

u ’,m = A%a" @ cos *az.
o
Left-hand term. ‘ Right-hand term.,

Term. Number. | Logarithm. | Term Logarithm.

0y, —37.01 | —1.56836 4 1.22308

Adu —17.67 —1.24724 @ 8.35218

& +29.20 1.46528 el 1.78738

cog® az 9.98670
y )’ "] 240 | 135022 | 2235 | 1.34934
i J |
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S u 9o =—A’a*m sin az cos az.
das
Left-hand terms. Right-hand terms.
l

Term. Number. | Logarithm. Term. |Logarithm.
", —37.01 | —1.56836 —d'd*w | —1. 36264
v + 8.12 0. 49415 sinaz | 9. 23967
aw +20.20 | 1.46538 cos az | 9.99335
L Y I

w v —3.955 | —0.59713 || —3.942 | —0. 59556
0w |

1 ——
k12 (-)—I"=O
/X0
l

v, —37.01 | —1.56836 u

A + 1.40 0. 14613 [ ........ 0

nw +29. 20 1. 16538 | |
£ 1115 | —0. 24911 0

om

This discrepancy results from the fact that ‘j)_;i’ has a value
0

‘1.40  ohtle ! 0
59, 20_0 .05, slightly larger than 0.

In evaluating the partial differentials in the direction of the
angular coordinate az, the factor 57°.29578 must be intro-
duced into the terms for partial differential, as this is the
number of degrees in one radius. Since the angular distance
is 180 degrees and the linear distance 1200 meters, the 10-

degree interval is equivalent to

1200 1
18 57.29578
which is the value of 9z in the partial differentials.

9z=10-degree interval= =1.1636,

du
0w
0z

= 2 A*a’w sin? qz.
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Left-hand terms. Right-hand terms.
Term. Number. | Logarithm. Term. [Logarithm.
(W +1. 42 0. 15224 2 0. 30103
o 1. 14 0. 05690 A a’os 1. 36264
0z 1.1636 0. 06579 sin® az 8. 47934
w%i_l 1. 391 0. 14335 1. 390 0. 14301
'w%_u = 2 A*d*o5 sin az cos az.
Wi 1. 42 0. 15224 2 A*d*m 1. 66367
v G. 452 0. 80969 sin az 9. 23967
iz 1.1636 0. 06579 cos az 9. 99335
n%‘ 7.873 | 0.89614 | 7.883 0. 89669

479
! d W4 A2 a $tn az cos a:.
()~
w,, 1.42 "] 0.15224 4 4% 1. 00123
Ow 1. 404 0. 14737 sin az 9. 23967
e 1. 1636 0. 06579 cos az 9. 99335
uéjﬁ’ 1. 713 0. 23382 1.715 0. 23425
[f24
E =A'a*w sin? a:.
to)
v 42. 59 1. 62936 A atos 1. 36264
@ 61. 29 1. 78738 gin® az 8. 47934
g: 0. 695 9. 84198 0. 695 9. 84198
" _A*a’w sin az cos az.
te)
u —37.01 | —1.56836 —A*a*s | —1. 36264
» 6. 526 0. 81468 sin az 9. 23467
m 61. 29 1. 78738 Ccos az 9. 99335
uv —3.941 | —0.59566 —3.941 | —0. 59566
[V)

‘With these values, our equations of motion for the vortex
tube, (3)-(4), now become

S {J)P_n = 92.3541.390—0.695=23.04— 4° a’w.
(2) 0 =—3.9424+7.883—3.941=0.
3 - "P ——LTTHLTIS g =9.746,

since ‘ g - = 9.806 at 45° latitude and sea level.

In making the several interpolations for u,,, v,, Wy, 4,, in
preparation for the integration across the intervals dm and dz
the mean values as derived from the mean logarithms were
employed. There are several small differences between the
above results obtained by computing both sides of the equa-
tions independently, but these are largely due to the neglect
of the second differentials, because the curves between the
initial and final points were not followed exactly in this inte-
gration. The terms in the 4,, are more accurate than the
others, as here computed.

The pressure at the sea-level plane.

The computation of the pressure at the level defined by
az=10°, that is the assumed sea level, is made by the formula,
p,— P, +1 =P A ® (mn._mn+1),
which is easily deduced from the first equation of motion

(equation 53),
oP
pom
and gives the results found in Table 26.
TAaBLE 26.—Fall in pressure between the successive vortex rings.

= Aa’as,

Rings. 1-2 2-3 34 4-5 5-6 6-7 7-8
Aar 1.349 5,575 23.05 | 95.28 393.91 1628.5 6732.3
I
D, — W41 75.4 47.0 20,2 ‘ 18.8 1.3 | 7.1 4.4
pm 1. 2682 1,2682 1,2682 ' 11,2682 1, 2682 1 1.2682 1.2682
Py — Pp+1 126.0 332.3 853.5 2211.3 5645, 0 | 14663. 37663,
Bn — Ba+l 0.94 249 6.40 16. 58 42, 3-1 110.0 281.7
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‘When a waterspout descends to sea level it is equivalent to
assuming that the pressure falls at the core by the amount of
the computed difference in pressure between the sea level and
the base of the cumulus cloud, or, in éhis case, 91 millimeters.
Starting from the assumed outer ring (3), we compute the
difference of the barometric pressure, 6.40 4 16.58 4- 42.34
+ 26.00 =91.32 millimeters. Hence, it follows that the calm
core is to be limited at about 16 meters, as can be seen
by comparing Table 26 with the radii = of the rings in
Table 25, since the 26.00 millimeters of pressure must be dis-
tributed beyond @, in the direction of a.

THE CASCADE OF THE COTTAGE CITY WATERSPOUT.

The photographs, Chamberlain 2d A in particular, show
that the bottom of the tube near the ocean is surrounded by
a vaporous mass of rounded form, which I have analyzed as
follows: The vortex tube approaches the sea level with vio-
lent radial, tangential and vertical components of velocity,
gharply separated from the quiet air surrounding it, at the
outermost layer of the revolving vortex. Were there no
ocean or obstacle to disturb the vortex motion, and were the
tube to form in a frictionless medium, the tube would extend
to the asymptote at a given distance, leaving a small calm
core free from gyration. But in fact the tube encounters
the waters of the ocean, and becomes distorted by the action
of the conflicting forces. The most prominent effect is the
change in the size of the tube, and the decrease of gyratory ve-
locity in consequence of friction and the other forces, caused by
the transfer of the energy of the tube to the masses of air and
water, wherein the forces of inertia are very large, since quiet
air and water are suddenly set in violent motion on meeting
the vortex. The intake of the vortex, due to the strong
ascending helical motion, requires a supply of air which
enters the tube by curved paths, as shown on the photograph
by the clear spaces near the surface of the ocean. The water
itself leaps up a few feet at the center into a point, or conical
wave, and a sharp measure of this distance is desirable as
the pressure-fall in the center of the tube can be estimated
from it. The circular rotation of the tube at the surface cuts
up the water into drops of spray, which are drawn into the
tube, together with the air moving toward the axis.

At a certain height above the surface where the intake has
become satisfied, and there are only small radial components
getting inward, the water and spray are thrown by the cen-
trifugal and deflecting forces outward from the tube at the
height of about 110 meters. This mass of air and water in-
gide the tube is gyrating violently, but on being ejected from
the tube it impinges upon the quiet air and loses its projec-
tile energy upward and outward, so that it falls back to the
ocean in a cascade. The falling spray is again sucked into
the tube on approaching the levels where the intake begins,
and the orbital rotation may be thus repeated more than
once. It is evident that there is a series of beautiful me-
chanical problems in this connection, but it is not easy to
treat them fully, because the size of the drops, the action of
viscosity on the velocity, and the velocity components them-
selves are not fully known. Since the formulas for the vor-
tex apply to media without friction and to parabolic trajec-
tories, it is difficult to modify them to meet the actual atmos-
pheric conditions. There is evidently a right-hand and a left-
hand trajectory, so that the origin of coordinates (x, z) can he
taken at the axis of the vortex as it touches the water; x is
along the surface, and : is perpendicular to it along the axis
of the tube. I have written down the formulas for the para-
bolie trajectories, which can be readily understood from fig. 5.

Some computations of a parabola thru the points (z =0,
z,=0) and (x,=5b, z,=128) show that this parabola is too silarp
near the vortex for the trajectory of the spray, and accord-
ingly some other curves have been sketched in, showing the
boundary of the water cascade, and some arrows indicating
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the paths of the water drops, the spray and the air, which seem
to conform to the design on Chamberlain’s photograph. To
pass from the pure parabola to the actual paths of the water
and spray masses is probably quite impracticable by mathe-
matical analysis, till we know more of the size of the water
masses, the viscosity, and the actual velocities in the several
parts of the disturbed tube, especially in the stream lines
near the surface where the vortex forces are seriously dis-
turbed by composition with the inflowing masses, suddenly
changed from rest into violent motion. It is evident that all
waterspouts and tornadoes will suck in objects near the sur-
face,”and discharge them into the quiet air a few hundred
feet above the surface, when they will fall again.

v

-+

Fi1a. 5.— Circulation of air and water in cascade. Heaviest full lines, vor-
tex tube. Middle full lines, parabolic trajectories. Lightestfull lines,
water cone. Dotted ovals, paths of water drops in cascade. Arrows,
direction of circulation. Height of cascade =128 meters. Diameter
of cascade — 220 meters. Diameter of vortex tube —74 meters.

TABLE 27.— Formulas for parabola.

AB

= v,

il 2,

AB* = vt AB*=— . 4D,
BC =1lgt g

AF =AE=h. v'=2gh.

FH = GH.

EAB= BAF. AB*=4h. 4D.
BAL=a.

TABLE 28.—Equations of parabola.
AK=mx=1vtcosa. ?

BKRK = vtsin@. -originat A.
BC = L gt2.
CK = z=vtsina—}gt*.

r=ux tan a — 21’20083(1.

- 23 '.L.Z

= tqn “= 4hcos’a

TABLE 29.— Formulas for the angle a, height h, and velocity v (in vacuo)
of & parabole thru (zz), (w,,).

et

r=x tana — !

: 1
1 4heos’a | |
et + origin at 0.
z,=ux,tana T !
LEE, 4 hcos*a |
tan ¢ = iy = 2,0
‘plx ('2 w])
h=_1.'1‘12(;1.‘,—.-r1) '
doo8*a(z, r,—z,7))
vi=2gh= 1 2gmm, (@)
_ cos*a &, —z,x,
Range AM=4hcosasina=2hsin2a. |
. . 4hsine 2vsi [
Time of flight = t = A,,lzl.’flfl =2" ng ¢ ‘L origin at 4.

Greatest height = HL = hsin®a. )



